Die Anatomie des Auges

Die Anatomie des Auges ist eine Zeitreise

 

Facettenauge der FliegeDas Auge ist ein Sinnesorgan zur Wahrnehmung von Lichtreizen. Es ist Teil des visuellen Systems und ermöglicht Lebewesen das Sehen. Die Aufnahme der Reize geschieht mit Hilfe von Fotorezeptoren, lichtempfindlichen Nervenzellen, deren Erregungszustand durch die unterschiedlichen Wellenlängen elektromagnetischer Strahlung aus dem sichtbaren Spektrum verändert wird. Bei Wirbeltieren gelangen diese Nervenimpulse über die Sehnervenbahnen zum Sehzentrum des Gehirns, wo sie schließlich zu einer optischen Wahrnehmung verarbeitet werden.

 

 

Die Augen von Tieren unterscheiden sich in Aufbau und Funktionalität teilweise erheblich. Ihr biologischer Stellenwert und damit ihre Leistungsfähigkeit ist eng an die Anforderungen des jeweiligen Organismus angepasst. Auch die Anzahl der Augen ist ein evolutionäres Ergebnis der Lebensumstände. Manche Tiere, deren Orientierung weniger von visuellen Eindrücken bestimmt wird, benötigen lediglich eine grobe Unterscheidung von Hell und Dunkel, andere wiederum von Kontrast- und Bewegungsmustern. Höher entwickelte Augen dienen der kontrastreichen Bildwahrnehmung, deren Qualität mit der Fähigkeit steigt, Helligkeitsunterschiede sehr differenziert wahrzunehmen. Dies drückt sich wiederum in einer entsprechenden Sehschärfe aus, die bei Tag, Dämmerung oder Nacht sehr unterschiedlich sein kann. Wieder andere benötigen weniger ein kontrastreiches Sehen als vielmehr ein großes Gesichtsfeld oder eine differenzierte Farbwahrnehmung in verschiedenen Wellenlängenbereichen.
Es gab Schätzungen, dass Augen der verschiedensten Bauweisen im Laufe der Evolution etwa 40 Mal neu entwickelt worden seien.  Fossilfunde belegen auch, dass es die ersten Augen bereits vor 505 Millionen Jahren im Erdzeitalter Kambrium gab.

Zentrale Eigenschaften

Als Resultat einer visuellen Reizverarbeitung sind die Eigenschaften Richtungssehen, Sehschärfe, Gesichtsfeld und Farbsehen zu nennen. Die Anforderungen der jeweiligen Lebensformen an diese Eigenschaften sind sehr unterschiedlich ausgeprägt. Zudem sind viele Spezies in der Lage, ihre Augen mit unterschiedlicher Präzision an verschiedene Objektentfernungen anzupassen (Akkommodation).

Richtungssehen

Manche Augentypen sind auf Grund ihrer anatomischen Entwicklung lediglich in der Lage, die Richtung auszumachen, aus der Licht auf ihre Sinneszellen fällt. Diese Eigenschaft lässt eine nur geringe visuelle Orientierung zu, stellt jedoch gegenüber der bloßen Wahrnehmung von Hell und Dunkel eine höhere Differenzierungsmöglichkeit dar.

SehtestSehschärfe

Mit Sehschärfe wird die Fähigkeit eines Lebewesens bezeichnet, Konturen und Muster in der Außenwelt als solche zu erkennen. Ihre Qualität ist abhängig von
  • dem Auflösungsvermögen des Augapfels
  • der Abbildungsqualität auf der Netzhaut, die durch die brechenden Medien des Auges – Hornhaut, Kammerwasser, Linse und Glaskörper – bestimmt wird
  • den optischen Eigenschaften des Objekts und seiner Umgebung (Kontrast, Farbe, Helligkeit)
  • der Form des Objekts: die Netzhaut und das zentrale Nervensystem sind in der Lage, bestimmte Formen (horizontale und vertikale Geraden, rechte Winkel) höher aufzulösen als es dem Auflösungsvermögen des Augapfels allein entspricht.

Gesichtsfeld

Mit Gesichtsfeld bezeichnet man alle zentralen und peripheren Punkte, die bei ruhiger Kopfhaltung und geradeaus gerichtetem Blick wahrgenommen werden können. Man unterscheidet das Gesichtsfeld jeweils eines Auges von der Summe der Gesichtsfelder aller Augen eines Lebewesens. Sein Ausmaß wird in der Regel in Grad angegeben und unterscheidet sich teils sehr deutlich. Beispiele der Dimension eines horizontalen Gesichtsfeldes:
  • Fliegen fast 360° (Facettenaugen)
  • Frosch ca. 330°
  • Turmfalke 300°
  • Krokodil 290°
  • Mensch 175°
  • Schleiereule 160°
  • Schnecken (Napf- und Lochaugen) etwa 100° bis 200°
  • Quallen und Würmer (Flachaugen) 100° bis 180°, bei mehreren Augen größer.

Farbsehen

Farbspektrum

Die Farbwahrnehmung ist die Fähigkeit, elektromagnetische Wellen verschiedener Wellenlängen in ihrer Intensität zu unterscheiden. Diese Fähigkeit ist im ganzen Tierreich verbreitet. Das Absorptionsspektrum der unterscheidbaren Wellenlängen charakterisiert artspezifisch die Qualität dieser Fähigkeit. Dazu muss das Wahrnehmungssystem mindestens zwei unterschiedliche Typen von Lichtrezeptoren besitzen, um die Zusammensetzungen des Lichts erkennen zu können.

Bauformen

Die einfachsten „Augen“ sind lichtempfindliche Sinneszellen auf der Außenhaut. Sie können nur erkennen, ob die Umgebung hell oder dunkel ist. Man spricht hier von Hautlichtsinn.
Insekten und andere Gliederfüßer haben Augen, die aus vielen einzelnen Augen zusammengesetzt sind. Diese Facettenaugen liefern ein rasterartiges Bild.
Neben den beschriebenen Augentypen mit lichtbrechenden Linsen findet man in der Natur gelegentlich auch Spiegelaugen. In den Augen der Kammmuschel (Pecten) wird das Bild durch Hohlspiegel erzeugt, die hinter der Netzhaut angeordnet sind. Die direkt vor der Netzhaut liegende Linse dient der optischen Korrektur des stark verzerrten Spiegelbildes. Die Spiegel sind nach dem Prinzip von reflektierenden Glasplatten gebaut. Mehr als 30 Schichten aus feinsten Guanin-Kristallen liegen dicht gestapelt. Auch andere Tiere haben Spiegelaugen, unter anderem der Tiefseekrebs, der Hummer und die Langusten. Diese Form hat sich offenbar dort durchgesetzt, wo es weniger auf die Bildqualität und mehr auf die Lichtausbeute ankommt.
AmöbeBereits der Einzeller besitzt einen Fotorezeptor zur Hell-Dunkel-Wahrnehmung. Durch die Pigmente des Augenfleckes wird er auf einer Seite abgeschirmt, so dass damit sogar ein einfaches Richtungssehen möglich ist. Das ermöglicht es der Zelle, sich zum Licht hin zu bewegen.

Lichtsinneszellen

Höher entwickelte Lebewesen wie der Regenwurm besitzen am Körperende oder verstreut einzelne Lichtsinneszellen.

Flachauge

Quallen und Seesterne besitzen viele nebeneinander liegende Lichtsinneszellen. Die Konzentrierung der Sinneszellen in solchen Flachaugen verbessert die Hell-Dunkel-Wahrnehmung.

Pigmentbecherauge

In Pigmentbecheraugen liegen die Sehzellen vom Licht abgewandt  in einem Becher aus lichtundurchlässigen Pigmentzellen. Das Licht kann nur durch die Öffnung des Bechers eindringen, um die Sehzellen zu stimulieren. Da daher immer nur ein kleiner Teil der Sehzellen gereizt wird, kann neben der Helligkeit auch die Einfallsrichtung des Lichts bestimmt werden. Solche Augen besitzen unter anderem Strudelwürmer und Schnecken.

Grubenauge

Das Grubenauge unterscheidet sich durch die dem Licht zugewandte Lage der Sinneszellen und dass die Grube mit Sekret gefüllt ist. In der Grube bilden die Sehzellen eine Zellschicht, die innen an eine Schicht von Pigmentzellen anschließt. Es ist also eine Weiterentwicklung des Flachauges. Es ermöglicht auch die Bestimmung der Intensität und der Einfallsrichtung des Lichts.

Lochauge und Blasenauge

Lochaugen sind weiterentwickelte Grubenaugen und funktionieren nach dem Prinzip der Lochkamera. Aus der Grube wird eine blasenförmige Einstülpung, die Öffnung verengt sich zu einem kleinen Loch und der Hohlraum ist vollständig mit Sekret gefüllt. Durch die erhöhte Anzahl der Sehzellen (Netzhaut) ist nun auch Bildsehen möglich. Das Bild ist jedoch lichtschwach, klein und steht auf dem Kopf. Die Schärfe des Bildes auf der Netzhaut hängt von der Anzahl der erregten Sehzellen ab. Da diese auch von der Entfernung vom Sehloch zum Gegenstand abhängt, ist beim Lochauge ein eingeschränktes Entfernungssehen möglich. Ein Lochauge mit verbesserter Leistung ist das Blasenauge, bei dem die Öffnung von einer durchsichtigen Haut bedeckt ist. Das Blasenauge entsteht aus einer Einstülpung die mit einem Pigmentepithel und einer Sehzellenschicht ausgekleidet ist. Es kommt bei Hohltieren, Schnecken und Ringelwürmern vor. Je nach Durchmesser der Sehöffnung entsteht entweder ein helleres aber unschärferes oder ein dunkleres aber schärferes Bild. Das Sekret kann auch zu einer einfachen Art von Linse verfestigt sein (bei Weinbergschnecken). Diese Modifikationen verbessern das Bild geringfügig.

Facettenauge

Facettenauge der FliegeFacettenaugen setzen sich aus einer Vielzahl von Einzelaugen zusammen, von denen jedes acht Sinneszellen enthält. Jedes Einzelauge sieht nur einen winzigen Ausschnitt der Umgebung, das Gesamtbild ist ein Mosaik aus allen Einzelbildern. Die Anzahl der Einzelaugen kann zwischen einigen Hundert bis hin zu einigen Zehntausend liegen. Die Auflösung des Facettenauges ist durch die Anzahl der Einzelaugen begrenzt und ist daher weit geringer als die Auflösung des Linsenauges. Allerdings kann die zeitliche Auflösung bei Facettenaugen deutlich höher sein als bei Linsenaugen. Sie liegt etwa bei fliegenden Insekten bei 250 Bildern pro Sekunde (also 250 Hz), was etwa dem vierfachen des menschlichen Auges mit 60 bis 65 Hz entspricht. Dies verleiht ihnen eine extrem hohe Reaktionsgeschwindigkeit. Die Farbempfindlichkeit des Facettenauges ist in den ultravioletten Bereich verschoben. Außerdem verfügen Spezies mit Facettenaugen über das größte Blickfeld aller bekannten Lebewesen.
Zusätzlich besitzen viele Gliederfüßer Ocellen, kleinere Augen, die sich häufig auf der Stirnmitte befinden und sehr unterschiedlich aufgebaut sein können. Bei einfachen Ocellen handelt es sich um Grubenaugen. Besonders leistungsfähige Ocellen besitzen eine Linse oder, wie bei den Spinnentieren, auch einen Glaskörper, es handelt sich also um kleine Linsenaugen.

Linsenauge

LinsenaugeDas einfachste Linsenauge hat noch nicht den komplizierten Aufbau, den wir vom Wirbeltierauge kennen. Es besteht aus nicht viel mehr als Linse, Pigmentzellen und Retina. Ein Beispiel hierfür ist das Linsenauge der Würfelqualle.
Obwohl sich die Augen von Wirbeltieren und Tintenfischen im Aufbau stark ähneln, haben sie diese sehr ähnliche Funktionsweise unabhängig voneinander entwickelt. Dies wird bei der Bildung des Auges beim Embryo sichtbar: Während sich das Auge bei Wirbeltieren durch eine Ausstülpung der Zellen entwickelt, die später das Gehirn bilden, entsteht das Auge der Weichtiere durch eine Einstülpung der äußeren Zellschicht, die später die Haut bildet.
Ein Krötenauge besitzt schon die meisten Teile, die auch das menschliche Auge hat, nur die Augenmuskeln fehlen. Deshalb kann eine Kröte, wenn sie selber ruhig sitzt, keine ruhenden Gegenstände sehen, da sie nicht zu aktiven Augenbewegungen fähig ist.
Bei den höchstentwickelten Linsenaugen sammelt ein mehrstufiger dioptrischer Apparat das Licht und wirft es auf die Netzhaut, die nun zwei Arten von Sinneszellen enthält, Stäbchen und Zapfen. Die Einstellung auf Nah- und Fernsicht wird durch eine elastische Linse ermöglicht, die von Zonulafasern gestreckt bzw. gestaucht wird. Die besten Linsenaugen findet man bei Wirbeltieren.
So ist zum Beispiel bei Greifvögeln die Fähigkeit entwickelt, Objekte in einem Bereich der Netzhaut stark vergrößert zu sehen, was insbesondere beim Kreisen in großer Höhe vorteilhaft ist.
Linsenauge der KatzeNachttiere wie Katzen, Eulen und Rehe, aber auch Schafe realisieren durch eine retroreflektierende Schicht (meist grün oder blau) hinter der Netzhaut einen Zugewinn an Empfindlichkeit, was ihnen als Nachttiere (Räuber wie Beute) zugute kommt.
Bei Katzen findet man zusätzlich eine sogenannte Schlitzblende, die beim Öffnungsverhältnis größere Unterschiede als Lochblenden erlaubt. 
Im Verhältnis zur Körpergröße sind die Augen bei nachtaktiven Tieren deutlich größer als bei den tagaktiven.
Für die Leistungsfähigkeit eines Auges ist auch die Auswertung der Wahrnehmungen durch die Nervenzellen im Auge und im Gehirn sowie die Augenbewegungen und die Lage der Augen am Kopf sehr wesentlich.
Die Auswertung im Gehirn kann von Art zu Art stark variieren.

Wirbeltierauge

Wirbeltierauge

Die Augen der Wirbeltiere sind sehr empfindliche und teils hoch entwickelte Sinnesorgane. Sie liegen geschützt und eingebettet in einem Muskel-, Fett- und Bindegewebspolster in den knöchernen Augenhöhlen (Orbita) des Schädels. Bei landlebenden Wirbeltieren wird das Auge nach außen hin durch die Augenlider geschützt, wobei der Lidschlussreflex eine Schädigung durch Fremdkörper verhindert. Zudem bewahrt er die empfindliche Hornhaut durch ständiges Benetzen mit Tränenflüssigkeit vor dem Austrocknen. Auch die Wimpern dienen dem Schutz vor Fremdkörpern, Staub und kleineren Partikeln.

 

 

Das Sehorgan der Wirbeltiere kann in drei Untereinheiten gegliedert werden

  • Augapfel
  • Anhangsorgane des Auges
  • Sehbahn
Mit einigen Ausnahmen entspricht der Aufbau des Wirbeltierauges dem des Menschen. Gleichwohl finden sich bei manchen Vögeln, Reptilien und wasserlebenden Wirbeltieren teils erhebliche Unterschiede hinsichtlich ihrer Leistungsfähigkeit. Äußerlich sichtbar sind lediglich die Hornhaut, Sclera und Bindehaut, Iris und Pupille, sowie die Augenlider und ein Teil der abführenden Tränenwege (Tränenpünktchen).

Querschnitt des AugapfelsAugapfel

Der Augapfel ist ein fast kugelförmiger Körper, dessen Hülle aus drei Schichten, Lederhaut, Aderhaut und Netzhaut, besteht. Der Innenraum des Augapfels enthält den Glaskörper, sowie die Linse und wird unterteilt in vordere und hintere Augenkammer. Zudem besitzt der Augapfel ein optisches System, den sogenannten dioptrischen Apparat, welcher ein scharfes Sehen erst möglich macht. Dieses System besteht neben der Linse und dem Glaskörper aus dem Kammerwasser und der Hornhaut.

Anhangsorgane

Zu den Anhangsorganen des Auges gehören der Tränenapparat, die Augenmuskeln, die Bindehaut und die Augenlider.
Der Tränenapparat landlebender Wirbeltiere besteht aus Tränendrüsen. Außerdem aus den zu- und ableitenden Kanälen und den Tränenwegen. Das gesamte Organ dient der Versorgung der vorderen Augenabschnitte, ihrer Reinigung und ihrem Schutz.
Anhangsorgane des Auges
Um die Augen bewegen zu können, verfügt das Wirbeltierauge über sieben (beim Menschen sechs) äußere Augenmuskeln. Sie sind unterteilt in vier gerade und zwei schräge Augenmuskeln, die das Auge jeweils in die unterschiedlichsten Richtungen ziehen können. Je nach Augenstellung verfügen die Muskeln über Funktionen, die sich in der Hebung, Senkung, Seitwärtswendung oder Rollung des Augapfels ausdrücken. Die so ausgelösten Augenbewegungen erfolgen um Objekte im Außenraum fixieren zu können und das Blickfeld zu vergrößern.
Die Bindehaut ist eine Schleimhaut im vorderen Augenabschnitt. Sie beginnt an der Lidkante und überzieht die hintere, dem Augapfel zugewandte Fläche der Augenlider. Dieser Schleimhautüberzug wirkt wie ein weiches Wischtuch und verteilt beim Lidschlag die Tränenflüssigkeit über der Hornhaut, ohne diese zu verletzen.
Das Augenlid ist eine dünne Falte, die ein Auge vollständig bedecken kann, um es mittels eines Reflexes (Lidschlussreflex) vor äußeren Einwirkungen zu schützen. Es verteilt bei jedem Lidschlag Tränenflüssigkeit, die sich als Film über der vorderen Augapfelfläche anlagert und so die empfindliche Hornhaut sauber und feucht hält.

Sehbahn

Als Sehbahn bezeichnet man alle Übertragungsleitungen des optischen Systems vom Auge bis zum Gehirn. Hierzu zählen die Netzhaut im Auge, der Sehnerv bis zu seinem Verlauf an der Sehnervenkreuzung, sowie den sich daran anschließenden Tractus opticus. Im seitlichen Kniehöcker des Zwischenhirns  finden die ersten Verschaltungen der Sehbahn außerhalb der Netzhaut statt. Sie setzt sich fort als sogenannte Gratioletsche Sehstrahlung bis zur primären Sehrinde.